Sains Malaysiana 54(12)(2025): 2847-2858

http://doi.org/10.17576/jsm-2025-5412-04

 

Screening and Preliminary Characterization of Potential Probiotic Lactic Acid Bacteria from Vegetable Wastes
(Penyaringan dan Pencirian Awal Bakteria Asid Laktik Probiotik yang Berpotensi daripada Sisa Sayuran
)

 

NUR HIDAYAHANUM HAMID1,*MOHD FAKHRULDDIN ISMAIL1, HASSAN MOHD DAUD2, PRAPANSAK SRISAPOOME3, MURNI MARLINA ABD KARIM1,5, AHMAD ZAHARIN ARIS1, RUHIL HAYATI HAMDAN4 & SITI FAIRUS MOHAMED YUSOF5

 

1International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 70150 Port Dickson, Negeri Sembilan, Malaysia

2Aquatic Animal Health Unit, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Laboratory of Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand

4Faculty of Veterinary Medicine, Department of Paraclinical Studies, Universiti Malaysia Kelantan, 16100 Kota Bharu, Kelantan, Malaysia

5Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Received: 20 February 2025/Accepted: 10 December 2025

 

Abstract

Southeast Asia generates over 8 million tons of vegetable waste annually, yet the microbial isolations from these wastes are rarely associated with potent probiotics. This study aimed to screen lactic acid bacteria (LAB) from fermented and non-fermented vegetable wastes for probiotic potential. LAB were isolated using serial dilutions on MRS agar supplemented with 1% CaCO3, yielding 17 isolates. Two isolates, FCU21 and FBS34, demonstrated notable probiotic potential by exhibiting antibacterial activity against Aeromonas hydrophila (6.3 ± 0.08 mm and 6.2 ± 0.04 mm) and Streptococcus agalactiae (5.6 ± 0.04 mm and 10.4 ± 0.28 mm). Initial identification based on morphological, phenotypic and biochemical characteristics showed Gram-positive, catalase-negative, non-spore-forming cocci. Genotypic analysis using 16S rRNA sequencing confirmed both isolates as Enterococcus hirae, with 99% similarity for FCU21 (from fermented cucumber) and 100% for FBS34 (from fermented mung bean sprouts), designated as Enterococcus hirae UPM01 and UPM02, respectively. Whole-genome shotgun sequencing showed distinct genomic features, including variations in base pairs, contigs and coding sequences. These findings highlight the promising potential of Enterococcus hirae strains as probiotics for aquaculture, warranting further investigation into their probiotic properties and applications.

Keywords: Enterococcus hirae; lactic acid bacteria; probiotic; vegetable waste

 

Abstrak

Asia Tenggara menghasilkan lebih daripada 8 juta tan sisa sayuran setiap tahun, namun mikroorganisma yang dipencilkan daripada sisa ini jarang dikaitkan dengan probiotik yang berpotensi tinggi. Penyelidikan ini bertujuan untuk menilai bakteria asid laktik (LAB) daripada sisa sayuran yang ditapai dan tidak ditapai bagi penilaian potensi probiotik. LAB diasingkan menggunakan pencairan bersiri pada agar MRS yang ditambah dengan 1% CaCO3, menghasilkan 17 pencilan. Dua pencilan, FCU21 dan FBS34 menunjukkan potensi probiotik yang lebih baik dengan aktiviti antibakteria terhadap Aeromonas hydrophila (6.3 ± 0.08 mm dan 6.2 ± 0.04 mm) dan Streptococcus agalactiae (5.6 ± 0.04 mm dan 10.4 ± 0.28 mm). Pengenalpastian awal berdasarkan ciri morfologi, fenotip dan biokimia menunjukkan pencilan tersebut adalah kokus Gram-positif, katalase-negatif dan tidak membentuk spora. Analisis genotip menggunakan penjujukan 16s rRNA mengesahkan kedua-dua pencilan sebagai Enterococcus hirae dengan persamaan 99% untuk FCU (daripada timun yang ditapai) dan 100% untuk FBS4 (daripada taugeh kacang hijau yang ditapai), yang kemudiannya dinamakan sebagai Enterococcus hirae UPM01 dan UPM02. Penjujukan seluruh genom mendedahkan ciri genom yang berbeza, termasuk variasi dalam pasangan bes, kontig dan jujukan pengekodan. Penemuan ini menyerlahkan potensi besar strain Enterococcus hirae sebagai probiotik untuk akuakultur yang memerlukan kajian lanjut mengenai sifat dan aplikasi probiotiknya.

Kata kunci: Bacteria asid laktik; Enterococcus hirae; probiotik; sisa sayuran

 

References

‘Aqilah, N.M.N., Rovina, K., Felicia, W.X.L. & Vonnie, J.M. 2023. A review on the potential bioactive components in fruits and vegetable wastes as value-added products in the food industry. Molecules 28(6): 2631.

Abdelsalam, M., Elgendy, M.Y., Elfadadny, M.R., Ali, S.S., Sherif, A.H. & Abolghait, S.K. 2023. A review of molecular diagnoses of bacterial fish diseases. Aquaculture International 31(1): 417-434.

Abdullahi, I.O. & Abdulkareem, S. 2010. Bacteriological quality of some ready-to-eat vegetables as retailed and consumed in Sabon-Gari, Zaria, Nigeria. Bayero Journal of Pure and Applied Sciences 3(1): 173-175.

Abebe, M. 2017. Characterisation of peel of fruit and leaf of vegetable waste with cow dung for maximizing the biogas yield. International Journal of Energy and Power Engineering 6: 13-21.

Adane, E. & Tsehayneh. 2017. Microbiological quality of fresh vegetables lettuce, cabbage and spinach) irrigated with wastewater released from Dashen brewery plant Gondar town, northern Ethiopia. International Journal of Innovative Pharmaceutical Sciences and Research 5(9): 1-11.

Assohoun, M.C., Djeni, T.N., Koussémon-Camara, M. & Brou, K. 2013. Effect of fermentation process on nutritional composition and aflatoxins concentration of doklu, a fermented maize-based food. Food and Nutrition Sciences 4(11): 1120.

Bennani, S., Mchiouer, K., Rokni, Y. & Meziane, M. 2017. Characterization and identification of lactic acid bacteria isolated from Moroccan raw cow’s milk. Journal of Material and Environmental Sciences 8: 4934-4944.

Cheng, K. & Zhu, D.M. 2005. On calibration of pH meters. Sensors 5(4): 209-219.

Coelho, M.C., Malcata, F.X. & Silva, C.C.G. 2022. Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions. Foods 11(15): 2276.

Cristofori, F., Dargenio, V.N., Dargenio, C., Miniello, V.L., Barone, M. & Francavilla, R. 2021. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Frontiers in Immunology 12: 578386.

Deng, L., Liu, Y. & Wang, W. 2020. Anaerobic digestion microorganisms. Biogas Technology Singapore: Springer Singapore. pp. 1-29.

Facklam, R. & Teixeira, L.M. 2003. Enterococcus. In Manual Clinical Microbiology, 8 ed., edited by Murray, P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A. & Yolken, R.H. Washington: ASM Press. pp. 422-433.

Freitas, L.C., Barbosa, J.R., da Costa, A.L.C., Bezerra, F.W.F., Pinto, R.H.H. & de Carvalho Junior, R.N. 2021. From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling 169: 105466.

Gao, M., Ma, X., Song, N., Wang, Q. & Wu, C. 2020. A newly isolated strain, Lactobacillus paracasei subsp. paracasei 2, produces L-lactic acid from pilot-scale fermentation of food waste under sterile and nonsterile conditions. Journal of Chemical Technology & Biotechnology 95(12): 3193-3201.

Garcia-Gonzalez, N., Prete, R., Battista, N. & Corsetti, A. 2020. Adhesion properties of food-associated Lactobacillus plantarum strains on human intestinal epithelial cells and modulation of IL-8 release. Frontiers in Microbiology 11: 581404.

Gerace, E., Mancuso, G., Midiri, A., Poidomani, S., Zummo, S. & Biondo, C. 2022. Recent advances in the use of molecular methods for the diagnosis of bacterial infections. Pathogens 11(6): 663.

González-Arenzana, L., Santamaría, P., López, R. & Garde-Cerdán, T. 2020. Microbial populations and spoilage in minimally processed vegetables. International Journal of Food Microbiology 334: 108830.

Hanol Bektaş, Z., Ucar, F.B. & Giray, B. 2020. Identification and probiotic properties of lactic acid bacterial isolated from freshwater fish. Iranian Journal of Fisheries Sciences 19(4): 1795-1807.

Jackson, C.R., Fedorka-Cray, P.J. & Barrett, J.B. 2004. Use of a genus- and species-specific multiplex PCR for identification of enterococci. Journal of Clinical Microbiology 42(8): 3558-3565.

Jalal, H., Giammarco, M., Lanzoni, L., Akram, M.Z., Mammi, L.M., Vignola, G., Chincarini, M., Formigoni, A. & Fusaro, I. 2023. Potential of fruits and vegetable by-products as an alternative feed source for sustainable ruminant nutrition and production: A review. Agriculture 13(2): 286.

Johar, A., Al-Musharafi, S.K. & Al-Sabahi, J.N. 2024. Lactic acid bacteria as alternatives to chemical antibiotics in aquaculture: A review. Journal of Fish Diseases 47(1): 45-60.

Johnson, M., Burgess, N., Shi, S., Li, J. & Blersch, D. 2022. Formulation of fish waste as a low-cost fermentative nutrient for lactic acid production by Lactobacillus pentosus. Waste and Biomass Valorization 13(6): 2917-2925.

Kaufmann, K. & Schoneck, A. 2007. Making Sauerkraut and Pickled Vegetables at Home: Creative Recipes for Lactic-fermented Food to Improve Your Health (Vol. 35). Book Publishing Company.

Khubber, S., Marti-Quijal, F.J., Tomasevic, I., Remize, F. & Barba, F.J. 2022. Lactic acid fermentation as a useful strategy to recover antimicrobial and antioxidant compounds from food and by-products. Current Opinion in Food Science 43: 189-198.

Kopermsub, P. & Yunchalard, S. 2010. Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. International Journal of Food Microbiology 138(3): 200-204.

Kumar, S., Sharma, A. & Singh, R. 2022. Diversity and functional properties of lactic acid bacteria isolated from vegetable wastes. Food Bioscience 47: 101678.

Kumar, R., Sharma, A. & Singh, P. 2020. Antimicrobial properties of lactic acid bacteria isolated from traditional fermented foods and their potential as biopreservatives. Journal of Food Science and Technology 57(12): 4395-4405.

Lawal, A.K. & Adedeji, O.M. 2013. Nutritional and elemental analysis of warankasi (fermented milk product) sold in Lagos metropolis. International Research Journal of Biotechnology 4(6): 112-116.

Linares-Morales, J.R., Salmerón-Ochoa, I., Rivera-Chavira, B.E., Gutiérrez-Méndez, N., Pérez-Vega, S.B. & Nevárez-Moorillón, G.V. 2021. Influence of culture media formulated with agroindustrial wastes on the antimicrobial activity of lactic acid bacteria. Journal of Microbiology & Biotechnology 32(1): 64.

Liu, Y., Wang, J. & Zhang, Y. 2023. Antimicrobial activity of lactic acid bacteria: Mechanisms, applications, and future perspectives. Comprehensive Reviews in Food Science and Food Safety 22(1): 1-25.

Loong, S.K., Che-Mat-Seri, N.A.A., Mahfodz, N.H. & Abu Bakar, S. 2020. Misidentification of multidrug resistant Enterococcus faecium using a commercial identification method. Asian Pacific Journal of Tropical Medicine 13(10): 474-476.

Luo, L., Lim, R. & Pradhan, N. 2024. Lactic acid-based fermentative hydrogen production from kitchen waste: Mechanisms and taxonomic insights. Chemical Engineering Journal 488: 150854.

Malenica, D., Kass, M. & Bhat, R. 2022. Sustainable management and valorization of agri-food industrial wastes and by-products as animal feed: For ruminants, non-ruminants and as poultry feed. Sustainability 15(1): 117.

McFeeters, R.F., Pérez-Díaz, I., Lee, C-H. & Breidt, F. 2013. Fermented vegetables. Food Microbiology 27603: 841-855.

Mennes, M.E. 1994. Make Your Own Sauerkraut (Extension Publication No. B2087, pp. 1-7). University of Wisconsin–Extension.

Muhamad Rizal, N.S., Neoh, H.M., Ramli, R., Periyasamy, P.R., Hanafiah, A., Abdul Samat, M.N., Tan, T.L., Wong, K.K., Nathan, S., Chieng, S. & Saw, S.H. 2020. Advantages and limitations of 16S rRNA next-generation sequencing for pathogen identification in the diagnostic microbiology laboratory: Perspectives from a middle-income country. Diagnostics 10(10): 816.

Pelinescu, D.R., Sasarman, E., Chifiriuc, M.C., Stoica, I., Nohit, A.M., Avram, I. & Dimov, T.V. 2009. Isolation and identification of some Lactobacillus and Enterococcus strains by a polyphasic taxonomical approach. Romanian Biotechnological Letters 14(2): 4225-4233.

Peréz-Dıaz, I.M., Breidt, F., Buescher, R.W., Arroyo-López, F.N., Jiménez-Diaz, R., Garrido-Fernández, A. & Johanningsmeire, S. 2013. Fermented and acidified vegetables. In Compendium of Methods for the Microbiological Examination of Foods (4th ed.), edited by Salfinger, Y. & Tortorello, M.L. American Public Health Association.

Porcellato, D., Østlie, H.M. & Skeie, S.B. 2014. Draft genome sequence of Enterococcus hirae strain INF E1 isolated from cultured milk. Genome Announcements 2(4): e00498-14.

Pyar, H. & Peh, K.K. 2014. Characterization and identification of Lactobacillus acidophilus using Biolog rapid identification system. International Journal of Pharmacy and Pharmaceutical Sciences 6(1): 189-193.

Ragavan, M.L. & Das, N. 2017. Isolation and characterization of potential probiotic yeasts from different sources. Asian Journal of Pharmaceutical and Clinical Research 10(4): 451-455.

Rengpipat, S., Rueangruklikhit, T. & Piyatiratitivorakul, S. 2008. Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcariferAquaculture Research 39(2): 134-143.

Robredo, B., Singh, K.V., Baquero, F., Murray, B.E. & Torres, C. 2000. Vancomycin-resistant enterococci isolated from animals and food. International Journal of Food Microbiology 54(3): 197-204.

Saadoun, J.H., Bertani, G., Levante, A., Vezzosi, F., Ricci, A., Bernini, V. & Lazzi, C. 2021. Fermentation of agri-food waste: A promising route for the production of aroma compounds. Foods 10(4): 707.

Sharma, M., Usmani, Z., Gupta, V.K. & Bhat, R. 2021. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Critical Reviews in Biotechnology 41(4): 535-563.

Sharma, P., Gaur, V.K., Gupta, S., Varjani, S., Pandey, A., Gnansounou, E., You, S., Ngo, H.H. & Wong, J.W. 2022. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste-derived economy for environmental sustainability. Science of the Total Environment 811: 152357.

Silva Tomoto, A.L.D., de Assis, T.M., Filho, F.C.M.F., Silva Araujo, T.M., Vilver, R.M., Santoyo, M.C. & Gomes, S.D. 2022. Production of bacteriocins by Leuconostoc mesenteroides using wastewater from the cassava starch industry as a growing medium. Industrial Biotechnology 18(4): 197-204.

Singh, R.P., Shadan, A. & Ma, Y. 2022. Biotechnological applications of probiotics: A multifarious weapon to disease and metabolic abnormality. Probiotics and Antimicrobial Proteins 14(6): 1184-1210.

Thi, N.T., Nguyen, T.H. & Le, T.H. 2023. Efficacy of lactic acid bacteria as probiotics in controlling aquatic pathogens in aquaculture systems. Aquaculture International 31(2): 789-805.

Tran, K.D., Le-Thi, L., Vo, H.H., Dinh-Thi, T.V., Nguyen-Thi, T., Phan, N.H. & Nguyen, K.U. 2024. Probiotic properties and safety evaluation in the invertebrate model host Galleria mellonella of the Pichia kudriavzevii YGM091 strain isolated from fermented goat milk. Probiotics & Antimicrobial Proteins 16(4): 1288-1303.

Velasco, D., Perez, S., Peña, F., Dominguez, M.A., Cartelle, M., Molina, F., Moure, R., Villanueva, R. & Bou, G. 2004. Lack of correlation between phenotypic techniques and PCR-based genotypic methods for identification of Enterococcus spp. Bacteriology 49: 151-156.

Wang, X., Zhang, P. & Zhang, X. 2021. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 26(19): 6076.

Wu, J.W.F.W., Redondo-Solano, M., Uribe, L., WingChing-Jones, R., Usaga, J. & Barboza, N. 2021. First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ 9: e12437.

Xiong, T., Guan, Q., Song, S., Hao, M. & Xie, M. 2022. Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. LWT - Food Science and Technology 154: 112689.

Zhang, Z., Tsapekos, P., Alvarado-Morales, M., Zhu, X., Zervas, A., Jacobsen, C.S. & Angelidaki, I. 2022. Enhanced fermentative lactic acid production from source-sorted organic household waste: Focusing on low-pH microbial adaptation and bio-augmentation strategy. Science of the Total Environment 808: 152129.

Zhang, Z., Shah, A.M., Mohamed, H., Tsiklauri, N. & Song, Y. 2021. Isolation and screening of microorganisms for the effective pretreatment of lignocellulosic agricultural wastes. BioMed Research International 2021(1): 5514745.

Zhao, X., Zhang, Z. & Zhang, H. 2022. Antimicrobial potential of lactic acid bacteria isolated from fermented foods and their applications in food preservation. Food Control 133: 108654.

 

*Corresponding author; email: hidayahanum@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next