Sains Malaysiana 54(12)(2025): 2847-2858
http://doi.org/10.17576/jsm-2025-5412-04
Screening
and Preliminary Characterization of Potential
Probiotic Lactic Acid Bacteria from Vegetable
Wastes
(Penyaringan dan Pencirian Awal Bakteria Asid Laktik Probiotik yang Berpotensi daripada Sisa Sayuran)
NUR
HIDAYAHANUM HAMID1,*, MOHD FAKHRULDDIN
ISMAIL1, HASSAN MOHD DAUD2, PRAPANSAK SRISAPOOME3, MURNI MARLINA ABD KARIM1,5, AHMAD ZAHARIN ARIS1, RUHIL
HAYATI HAMDAN4 & SITI FAIRUS
MOHAMED YUSOF5
1International Institute of Aquaculture
and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 70150 Port Dickson, Negeri Sembilan, Malaysia
2Aquatic Animal Health Unit,
Faculty of Veterinary Medicine, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Laboratory of Aquatic
Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
4Faculty of Veterinary Medicine, Department of
Paraclinical Studies, Universiti Malaysia Kelantan,
16100 Kota Bharu, Kelantan, Malaysia
5Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia
Received: 20 February 2025/Accepted: 10 December 2025
Abstract
Southeast Asia generates
over 8 million tons of vegetable waste annually, yet the microbial isolations
from these wastes are rarely associated with potent probiotics. This study
aimed to screen lactic acid bacteria (LAB) from fermented and non-fermented
vegetable wastes for probiotic potential. LAB were isolated using serial dilutions on MRS agar supplemented with 1% CaCO3, yielding 17 isolates. Two isolates, FCU21 and FBS34, demonstrated notable probiotic
potential by exhibiting antibacterial activity against Aeromonas hydrophila (6.3 ± 0.08 mm and 6.2 ± 0.04 mm) and Streptococcus agalactiae (5.6 ± 0.04 mm and 10.4 ±
0.28 mm). Initial identification
based on morphological, phenotypic and biochemical characteristics showed Gram-positive,
catalase-negative, non-spore-forming cocci. Genotypic analysis using 16S rRNA
sequencing confirmed both isolates as Enterococcus hirae,
with 99% similarity for FCU21 (from fermented cucumber) and 100% for FBS34
(from fermented mung bean sprouts), designated as Enterococcus hirae UPM01 and UPM02, respectively. Whole-genome
shotgun sequencing showed distinct genomic features, including variations in base
pairs, contigs and coding sequences. These findings highlight the promising
potential of Enterococcus hirae strains as
probiotics for aquaculture, warranting further investigation into their
probiotic properties and applications.
Keywords: Enterococcus hirae; lactic acid bacteria; probiotic; vegetable
waste
Abstrak
Asia Tenggara menghasilkan lebih daripada 8 juta tan sisa sayuran setiap
tahun, namun mikroorganisma yang dipencilkan daripada sisa ini jarang dikaitkan
dengan probiotik yang berpotensi tinggi. Penyelidikan ini bertujuan untuk
menilai bakteria asid laktik (LAB) daripada sisa sayuran yang ditapai dan tidak
ditapai bagi penilaian potensi probiotik. LAB diasingkan menggunakan pencairan bersiriada agar MRS yang ditambah dengan 1% CaCO3, menghasilkan 17 pencilan. Dua pencilan, FCU21 dan
FBS34 menunjukkan potensi probiotik yang lebih baik dengan aktiviti antibakteria terhadap Aeromonas hydrophila (6.3 ± 0.08 mm dan
6.2 ± 0.04 mm) dan Streptococcus agalactiae (5.6 ± 0.04 mm dan 10.4 ± 0.28 mm). Pengenalpastian awal berdasarkan ciri morfologi, fenotip dan biokimia menunjukkan pencilan tersebut adalah kokus Gram-positif, katalase-negatif dan tidak membentuk spora. Analisis genotip menggunakan penjujukan 16s rRNA mengesahkan kedua-dua pencilan sebagai Enterococcus hirae dengan persamaan 99% untuk FCU (daripada timun yang ditapai) dan 100% untuk FBS4 (daripada taugeh kacang hijau yang ditapai), yang kemudiannya dinamakan sebagai Enterococcus hirae UPM01 dan UPM02. Penjujukan seluruh genom mendedahkan ciri genom yang berbeza, termasuk variasi dalam pasangan bes, kontig dan jujukan pengekodan. Penemuan ini menyerlahkan potensi besar strain Enterococcus hirae sebagai probiotik untuk akuakultur yang memerlukan kajian lanjut mengenai sifat dan aplikasi probiotiknya.
Kata kunci: Bacteria asid laktik; Enterococcus hirae; probiotik; sisa sayuran
References
‘Aqilah, N.M.N.,
Rovina, K., Felicia, W.X.L. & Vonnie, J.M. 2023. A review on the potential
bioactive components in fruits and vegetable wastes as value-added products in
the food industry. Molecules 28(6): 2631.
Abdelsalam, M., Elgendy,
M.Y., Elfadadny, M.R., Ali, S.S., Sherif,
A.H. & Abolghait, S.K. 2023. A review of molecular
diagnoses of bacterial fish diseases. Aquaculture International 31(1):
417-434.
Abdullahi, I.O. &
Abdulkareem, S. 2010. Bacteriological quality of some ready-to-eat vegetables
as retailed and consumed in Sabon-Gari, Zaria, Nigeria. Bayero Journal of Pure and Applied Sciences 3(1): 173-175.
Abebe, M. 2017.
Characterisation of peel of fruit and leaf of vegetable waste with cow dung for
maximizing the biogas yield. International Journal of Energy and Power
Engineering 6: 13-21.
Adane, E. & Tsehayneh. 2017. Microbiological quality of fresh
vegetables lettuce, cabbage and spinach) irrigated with wastewater released
from Dashen brewery plant Gondar town, northern Ethiopia. International
Journal of Innovative Pharmaceutical Sciences and Research 5(9): 1-11.
Assohoun, M.C., Djeni, T.N., Koussémon-Camara, M.
& Brou, K. 2013. Effect of fermentation process on nutritional composition
and aflatoxins concentration of doklu, a fermented
maize-based food. Food and Nutrition Sciences 4(11): 1120.
Bennani, S., Mchiouer,
K., Rokni, Y. & Meziane, M. 2017.
Characterization and identification of lactic acid bacteria isolated from
Moroccan raw cow’s milk. Journal of Material and Environmental Sciences 8: 4934-4944.
Cheng,
K. & Zhu, D.M. 2005. On calibration of pH meters. Sensors 5(4): 209-219.
Coelho, M.C., Malcata, F.X. & Silva, C.C.G. 2022. Lactic acid bacteria in raw-milk cheeses: From starter
cultures to probiotic functions. Foods 11(15): 2276.
Cristofori, F., Dargenio, V.N., Dargenio, C., Miniello,
V.L., Barone, M. & Francavilla, R. 2021. Anti-inflammatory and immunomodulatory effects of probiotics in gut
inflammation: A door to the body. Frontiers in Immunology 12: 578386.
Deng, L., Liu, Y. & Wang, W. 2020. Anaerobic
digestion microorganisms. Biogas
Technology Singapore: Springer Singapore. pp.
1-29.
Facklam, R. & Teixeira, L.M. 2003. Enterococcus. In Manual
Clinical Microbiology, 8 ed., edited by Murray, P.R., Baron, E.J.,
Jorgensen, J.H., Pfaller, M.A. & Yolken, R.H. Washington: ASM Press. pp.
422-433.
Freitas, L.C., Barbosa, J.R., da Costa, A.L.C., Bezerra,
F.W.F., Pinto, R.H.H. & de Carvalho Junior, R.N. 2021. From waste to sustainable industry: How can
agro-industrial wastes help in the development of new products? Resources,
Conservation and Recycling 169: 105466.
Gao, M., Ma, X., Song, N., Wang, Q. & Wu, C. 2020.
A newly isolated strain, Lactobacillus paracasei subsp. paracasei 2, produces L-lactic acid
from pilot-scale fermentation of food waste under sterile and nonsterile
conditions. Journal of Chemical Technology & Biotechnology 95(12):
3193-3201.
Garcia-Gonzalez, N., Prete, R., Battista, N. &
Corsetti, A. 2020. Adhesion properties of food-associated Lactobacillus
plantarum strains on human intestinal epithelial cells and modulation of
IL-8 release. Frontiers in
Microbiology 11: 581404.
Gerace, E., Mancuso, G., Midiri,
A., Poidomani, S., Zummo, S. & Biondo, C. 2022. Recent advances in the use of molecular methods for
the diagnosis of bacterial infections. Pathogens 11(6): 663.
González-Arenzana, L., Santamaría, P., López, R. &
Garde-Cerdán, T. 2020. Microbial
populations and spoilage in minimally processed vegetables. International
Journal of Food Microbiology 334: 108830.
Hanol Bektaş, Z., Ucar,
F.B. & Giray, B. 2020. Identification and
probiotic properties of lactic acid bacterial isolated from freshwater
fish. Iranian Journal of Fisheries Sciences 19(4): 1795-1807.
Jackson, C.R.,
Fedorka-Cray, P.J. & Barrett, J.B. 2004. Use of a genus- and
species-specific multiplex PCR for identification of enterococci. Journal of
Clinical Microbiology 42(8): 3558-3565.
Jalal, H., Giammarco, M., Lanzoni, L., Akram, M.Z., Mammi, L.M.,
Vignola, G., Chincarini, M., Formigoni, A. &
Fusaro, I. 2023. Potential of fruits and vegetable by-products as an
alternative feed source for sustainable ruminant nutrition and production: A
review. Agriculture 13(2): 286.
Johar, A., Al-Musharafi, S.K. & Al-Sabahi,
J.N. 2024. Lactic acid
bacteria as alternatives to chemical antibiotics in aquaculture: A review. Journal
of Fish Diseases 47(1): 45-60.
Johnson, M., Burgess, N., Shi, S., Li, J. &
Blersch, D. 2022. Formulation of fish waste as a low-cost fermentative nutrient
for lactic acid production by Lactobacillus pentosus. Waste and Biomass Valorization 13(6): 2917-2925.
Kaufmann, K. & Schoneck, A. 2007. Making
Sauerkraut and Pickled Vegetables at Home: Creative Recipes for
Lactic-fermented Food to Improve Your Health (Vol. 35). Book
Publishing Company.
Khubber, S., Marti-Quijal, F.J., Tomasevic, I., Remize, F. &
Barba, F.J. 2022. Lactic acid fermentation as a useful strategy to recover
antimicrobial and antioxidant compounds from food and by-products. Current
Opinion in Food Science 43: 189-198.
Kopermsub, P. & Yunchalard, S.
2010. Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. International Journal of Food Microbiology 138(3): 200-204.
Kumar, S., Sharma, A. & Singh, R. 2022. Diversity
and functional properties of lactic acid bacteria isolated from vegetable
wastes. Food Bioscience 47: 101678.
Kumar, R., Sharma, A. & Singh, P. 2020.
Antimicrobial properties of lactic acid bacteria isolated from traditional
fermented foods and their potential as biopreservatives. Journal of Food Science and Technology 57(12): 4395-4405.
Lawal, A.K. & Adedeji, O.M. 2013. Nutritional and
elemental analysis of warankasi (fermented milk product)
sold in Lagos metropolis. International Research Journal of Biotechnology 4(6): 112-116.
Linares-Morales, J.R., Salmerón-Ochoa,
I., Rivera-Chavira, B.E., Gutiérrez-Méndez, N., Pérez-Vega, S.B. & Nevárez-Moorillón, G.V. 2021. Influence of culture media
formulated with agroindustrial wastes on the
antimicrobial activity of lactic acid bacteria. Journal of Microbiology &
Biotechnology 32(1): 64.
Liu, Y., Wang, J. & Zhang, Y. 2023. Antimicrobial
activity of lactic acid bacteria: Mechanisms, applications, and future
perspectives. Comprehensive Reviews in Food Science and Food Safety 22(1): 1-25.
Loong, S.K.,
Che-Mat-Seri, N.A.A., Mahfodz, N.H. & Abu Bakar,
S. 2020. Misidentification of multidrug resistant Enterococcus faecium using a commercial identification method. Asian Pacific Journal of
Tropical Medicine 13(10): 474-476.
Luo, L., Lim, R. & Pradhan, N. 2024. Lactic
acid-based fermentative hydrogen production from kitchen waste: Mechanisms and
taxonomic insights. Chemical Engineering Journal 488: 150854.
Malenica, D., Kass, M. &
Bhat, R. 2022. Sustainable
management and valorization of agri-food industrial
wastes and by-products as animal feed: For ruminants, non-ruminants and as
poultry feed. Sustainability 15(1): 117.
McFeeters, R.F., Pérez-Díaz, I., Lee, C-H. & Breidt, F. 2013. Fermented vegetables. Food Microbiology 27603: 841-855.
Mennes, M.E. 1994. Make Your Own Sauerkraut (Extension
Publication No. B2087, pp. 1-7). University of Wisconsin–Extension.
Muhamad Rizal, N.S., Neoh, H.M., Ramli, R., Periyasamy, P.R., Hanafiah, A.,
Abdul Samat, M.N., Tan, T.L., Wong, K.K., Nathan, S., Chieng, S. & Saw,
S.H. 2020. Advantages and limitations of 16S rRNA next-generation sequencing
for pathogen identification in the diagnostic microbiology laboratory: Perspectives
from a middle-income country. Diagnostics 10(10): 816.
Pelinescu, D.R., Sasarman, E., Chifiriuc, M.C., Stoica, I., Nohit, A.M., Avram, I. & Dimov, T.V. 2009. Isolation
and identification of some Lactobacillus and Enterococcus strains
by a polyphasic taxonomical approach. Romanian Biotechnological Letters 14(2): 4225-4233.
Peréz-Dıaz, I.M., Breidt,
F., Buescher, R.W., Arroyo-López, F.N., Jiménez-Diaz, R., Garrido-Fernández, A.
& Johanningsmeire, S. 2013. Fermented and
acidified vegetables. In Compendium of Methods for the Microbiological Examination
of Foods (4th ed.), edited by Salfinger, Y. &
Tortorello, M.L. American Public Health Association.
Porcellato, D., Østlie, H.M. &
Skeie, S.B. 2014. Draft genome
sequence of Enterococcus hirae strain INF E1
isolated from cultured milk. Genome Announcements 2(4): e00498-14.
Pyar, H. & Peh, K.K. 2014. Characterization and
identification of Lactobacillus acidophilus using Biolog rapid identification system. International Journal of Pharmacy and
Pharmaceutical Sciences 6(1): 189-193.
Ragavan, M.L. & Das, N.
2017. Isolation and
characterization of potential probiotic yeasts from different sources. Asian
Journal of Pharmaceutical and Clinical Research 10(4): 451-455.
Rengpipat, S., Rueangruklikhit, T. & Piyatiratitivorakul,
S. 2008. Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer. Aquaculture
Research 39(2): 134-143.
Robredo, B., Singh,
K.V., Baquero, F., Murray, B.E. & Torres, C. 2000. Vancomycin-resistant
enterococci isolated from animals and food. International Journal of
Food Microbiology 54(3): 197-204.
Saadoun, J.H., Bertani, G.,
Levante, A., Vezzosi, F., Ricci, A., Bernini, V. & Lazzi, C. 2021. Fermentation of agri-food waste: A promising
route for the production of aroma compounds. Foods 10(4): 707.
Sharma, M., Usmani, Z., Gupta, V.K. & Bhat, R.
2021. Valorization of fruits and vegetable wastes and
by-products to produce natural pigments. Critical Reviews in Biotechnology 41(4): 535-563.
Sharma, P., Gaur, V.K., Gupta, S., Varjani,
S., Pandey, A., Gnansounou, E., You, S., Ngo, H.H.
& Wong, J.W. 2022. Trends in mitigation of industrial waste: Global health
hazards, environmental implications and waste-derived economy for environmental
sustainability. Science of the Total Environment 811: 152357.
Silva Tomoto, A.L.D., de
Assis, T.M., Filho, F.C.M.F., Silva Araujo, T.M., Vilver,
R.M., Santoyo, M.C. & Gomes, S.D. 2022. Production of bacteriocins by Leuconostoc mesenteroides using wastewater from the cassava starch industry as a growing medium. Industrial
Biotechnology 18(4): 197-204.
Singh, R.P., Shadan, A. & Ma, Y. 2022.
Biotechnological applications of probiotics: A multifarious weapon to disease
and metabolic abnormality. Probiotics and Antimicrobial Proteins 14(6):
1184-1210.
Thi, N.T., Nguyen, T.H. & Le, T.H. 2023. Efficacy of
lactic acid bacteria as probiotics in controlling aquatic pathogens in
aquaculture systems. Aquaculture International 31(2): 789-805.
Tran, K.D., Le-Thi, L., Vo,
H.H., Dinh-Thi, T.V., Nguyen-Thi,
T., Phan, N.H. & Nguyen, K.U. 2024. Probiotic properties and safety
evaluation in the invertebrate model host Galleria mellonella of the Pichia kudriavzevii YGM091 strain
isolated from fermented goat milk. Probiotics & Antimicrobial Proteins 16(4): 1288-1303.
Velasco, D., Perez, S., Peña, F., Dominguez, M.A., Cartelle, M., Molina, F., Moure, R., Villanueva, R. &
Bou, G. 2004. Lack of correlation between phenotypic techniques and PCR-based
genotypic methods for identification of Enterococcus spp. Bacteriology 49: 151-156.
Wang, X., Zhang, P. & Zhang, X. 2021. Probiotics
regulate gut microbiota: An effective method to improve immunity. Molecules 26(19): 6076.
Wu, J.W.F.W., Redondo-Solano, M., Uribe, L., WingChing-Jones, R., Usaga, J.
& Barboza, N. 2021. First characterization of the probiotic potential of
lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ 9: e12437.
Xiong, T., Guan, Q., Song, S., Hao, M. & Xie, M.
2022. Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut
fermentation. LWT - Food Science and Technology 154: 112689.
Zhang, Z., Tsapekos, P.,
Alvarado-Morales, M., Zhu, X., Zervas, A., Jacobsen, C.S. & Angelidaki, I. 2022. Enhanced fermentative lactic acid
production from source-sorted organic household waste: Focusing on low-pH
microbial adaptation and bio-augmentation strategy. Science of the Total
Environment 808: 152129.
Zhang, Z., Shah, A.M., Mohamed, H., Tsiklauri, N.
& Song, Y. 2021. Isolation and screening of microorganisms for the
effective pretreatment of lignocellulosic agricultural wastes. BioMed
Research International 2021(1): 5514745.
Zhao, X., Zhang, Z. & Zhang, H. 2022.
Antimicrobial potential of lactic acid bacteria isolated from fermented foods
and their applications in food preservation. Food Control 133: 108654.
*Corresponding author; email: hidayahanum@upm.edu.my